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a b s t r a c t

Starvation of polymer electrolyte fuel cells (PEFC) takes place, especially during transients, if reactants
are consumed in the fuel cell faster than they can be supplied. It is one of the main causes of aging and
degeneration of fuel cells.

To prevent oxidant starvation and to allow for a dynamic operation of the fuel cell, the excess ratio
of oxygen needs to be adjusted rapidly by increasing the mass flow into the cathode. This increase is
eywords:
tarvation prevention
odel predictive control

uel cell

limited by the inertia of the actuators. Especially at fast load changes the risk of starvation is high. This
problem can be faced by limiting the dynamics of load changes or by decoupling the desired load from the
effective load. This work presents a decoupled approach, where the effective fuel cell current becomes a
controllable variable. Consequently, the control variables are the oxygen excess ratio, the fuel cell pressure,
and the effective current. To prevent starvation the control design has to guarantee that the oxygen excess
ratio does not fall beyond a minimum value. This goal is achieved by model predictive control which is an
optimal control scheme that incorporates actuator limitations and state constraints in the control design.
. Introduction

An undersupply of fuel cells leads to a depletion of reactants
t the reaction surface and finally to fuel cell starvation. Fuel and
xidant starvation are one of the main causes of short life and per-
ormance degradation of fuel cells [1]. When starvation occurs a
eversal of the fuel cell voltage can happen and carbon corrosion
akes place [2,3]. Especially during transients, starvation can occur
f reactants are consumed in the fuel cell faster than they can be
upplied by the delivery system. To prevent starvation corrective
ctions as rate limiters and reference governors for the fuel cell
urrent, as well as fast mass flow control need to be employed
4–6].

In the following a new model of the gas dynamics of a fuel
ell system, incorporating the pipes and fittings at the inlet and
he outlet, the valve and the fuel cell stack is presented. It
s a nonlinear model with parameters identified at a polymer

lectrolyte fuel cell system. To influence the transients of the
uel cell current the desired load is decoupled from the effec-
ive load. Thereby, the fuel cell current becomes a controllable
ariable.
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To prevent starvation three actuators – the valve, the mass
flow controller, and the electrical load – are used in an integrated
approach. The presented model predictive control approach is a
multivariable control which incorporates the pressure control, the
mass flow control, and the control of the fuel cell current in one
scheme. The model predictive controller calculates optimal con-
trol inputs regarding actuator limitations and constraints of the
controlled variables.

2. Model of the fuel cell system

The nonlinear model of the fuel cell system describes the
dynamic behaviour of the mass flows and the pressure drops of
the gas supply, the fuel cell stack, the exhaust, and the outlet valve.
Furthermore, a model of the mass flow controller and a model of
the electrical load are incorporated.

2.1. Gas dynamics

The model of the gas dynamics is based on the law of conserva-

tion of mass and the description of laminar and turbulent flow [7,8].
The model does not account for spatial dependencies. In analogy to
electronic circuits the gas dynamics is described by an equivalent
circuit of lumped laminar and turbulent flow resistances, Rlam and
Rturb, as well as mass storing capacitances C [9,10].

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:michael.danzer@uni-ulm.de
dx.doi.org/10.1016/j.jpowsour.2008.12.089
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Nomenclature

A system matrix
B input matrix
C capacity
E tracking error
f nonlinear function
Hp prediction horizon
J objective function
k discrete time index
Kexp exponential parameter of the turbulent flow resis-

tance
Klam parameter of the laminar flow resistance
Kturb linear parameter of the turbulent flow resistance
m mass
NL vector or matrix of nonlinearities
p pressure
�p pressure difference
Q weighting matrix
Rlam laminar flow resistance
Rturb turbulent flow resistance
R weighting matrix
t continuous time
T sampling time
T temperature (with index)
u input vector
�Û vector of future changes to the input vector
v offset vector
W mass flow
x state vector
y output vector
Ŷ vector of predicted outputs
Ŷ f free response
yO2 mass fraction of oxygen in air
�O2 excess ratio of oxygen

Greek letters
� correction factor
� time constant

Indices
0 standard conditions
c continuous
C capacity
d discrete
des desired
eff effective
EL electrical load
FC fuel cell
H2O water
in inlet
max maximum
MFC mass flow controller
min minimum
O2 oxygen
out outlet
react reaction

e

�

All components in between the mass flow controller (MFC) and
the fuel cell stack, as well as all components in between the fuel
cell stack and the outlet valve are combined to one component for
the inlet and one for the outlet.
ref reference

V valve
The static behaviour of a component is determined by a nonlin-
ar function

· �p = � · R · W = KlamW + KturbWKexp (1)
Fig. 1. Equivalent circuit of a component of the gas dynamics with laminar and
turbulent flow resistance, Rlam and Rturb, and capacitance C.

of the pressure drop �p over the component in dependence on the
mass flow W = ṁ through it, with the nonlinear flow resistance R
which is composed of a laminar and a turbulent part

R = Rlam + Rturb = 1
�

· (Klam + Kturb WKFC,exp−1). (2)

The exponential parameter Kexp describes the nonlinear rela-
tion of the pressure drop and the mass flow at a turbulent flow
resistance. The parameter of the laminar flow resistance Klam and
the parameters of the turbulent flow resistance Kturb and Kexp are
constant. As a correction factor

� = T0 · pin

Tin · p0
(3)

accounts for the deviation from standard pressure and standard
temperature at the inlet of the component. Therewith, the pressure
difference

�p = f (W, pin, Tin) (4)

is a nonlinear function of the current mass flow through the com-
ponent, the temperature, and the pressure at the inlet.

The dynamic behaviour of a component is related to the capa-
bility to store mass in its volume. With the differential equation of
the pressure at a capacitance C

d
dt

p = ṗ = 1
C

· WC (5)

and the equivalence to Kirchhoff’s current law for mass flows

Win = WC + W (6)

with

W = �p

R
= pin − pout

R
(7)

the differential equation of a component

Win = C · ṗin + �p

R
= C · ṗin + pin − pout

R
(8)

results. All components as pipes, manifolds, fittings, valves, and the
fuel cell stack itself can be described by equation (8) and the accord-
ing equivalent circuit depicted in Fig. 1. For pipes, manifolds, and
fittings the parameter Kexp is equal to 2. For valves, where the flow
is purely turbulent, the parameter Klam = 0 disappears.

Fig. 2 shows the whole system of the gas dynamics of a fuel cell.
Fig. 2. Equivalent circuit of the fuel cell system comprising a mass flow controller
(MFC), the fuel cell stack, inlet and outlet, and a valve.
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Fig. 3. Equivalent circuit of the fuel cell stack with effective mass flow Weff.

The differential equation of the inlet with Kin,exp = 2 is

in = Cin · ṗin + pin − pFC,in

Rin
(9)

ith the flow resistance

in = 1
�in

· (Kin,lam + Kin,turb WFC,in). (10)

The differential equation of the outlet with Kout,exp = 2 is

out = Cout · ṗFC,out + pFC,out − pV

Rout
(11)

ith the flow resistance

out = 1
�out

· (Kout,lam + Kout,turb Wout). (12)

For the valve which does not have the capability to store mass
n algebraic equation

V · �pV = �V · RV · Wout = KV,turbWKV,exp
out (13)

esults with the flow resistance

V = 1
�V

· KV,turb WKV,exp−1
out (14)

Equation (13) can be combined with the differential equation
11) to

out = Cout · ṗFC,out + pFC,out − pout

RVout
(15)

ith the sum of the flow resistances RVout = RV + Rout.
The model of the fuel cell stack (Fig. 3) differs from the other

ubmodels because of the electrochemical reaction that is taking
lace and the mass flows across the membrane which are modelled
y an effective mass flow.

FC = WFC,eff + WFC,out (16)

The differential equation of the fuel cell is

FC,in = CFC · ṗFC,in + pFC,in − pFC,out

RFC
(17)

ith the flow resistance

FC = 1
�FC

· (KFC,lam + KFC,turb WKFC,exp−1
FC ) (18)

For the fuel cell stack, the model parameters may depend on the
ressure level, the humidity and the current mass flow.

The structure of the model of the gas dynamics can be used both,
or the anode and the cathode side of a fuel cell. The incorporated
arameters were identified for both sides. In the following only the
athode side will be regarded.

.2. Conversion of oxygen
The fuel cell reaction – at the cathode side the reduction of oxy-
en – couples the gas dynamics to the fuel cell current. The mass
ow of the reacting oxygen

react,O2 = kreact,O2 · IFC (19)
r Sources 190 (2009) 86–91

which contributes to the effective mass flow in the fuel cell is,
with Faraday’s law, proportional to the effective fuel cell current
IFC, where kreact,O2 is the proportionality constant.

The ratio of oxygen fed through the fuel cell WFC,O2 to the oxygen
consumed in the reaction Wreact,O2

�O2 = WFC,O2

Wreact,O2

> 1 (20)

is called excess ratio and is defined as the inverse of the conversion.
Thereby, the mass flow of oxygen through the fuel cell is

WFC,O2 = yO2 · (WFC − WFC,H2O)

= yO2 ·
(pFC,in − pFC,out

RFC
− WFC,H2O

)
(21)

with the mass fraction of oxygen in air yO2 .
For values of yO2 close to one or less, not enough reactants flow

through the fuel cell to sustain the reaction. In other words, starva-
tion of fuel cells takes place, when less oxygen is fed to the cathode
as is consumed in the reaction.

2.3. Models of the actuators

Besides the outlet valve, the mass flow controller and the elec-
trical load are actuators of the fuel cell system. The dynamics of the
mass flow controller (MFC) is modelled as a first-order lag element

Wd = �MFC · Ẇin + Win (22)

with the desired mass flow Wd, the mass flow into the system Win,
and the time constant �MFC which describes the inertia of supply-
ing an air mass flow into the system. If models of compressors or
blowers exist they can be used instead.

The electrical load (EL) is also modelled as a first-order lag ele-
ment

IEL,d = �EL · İFC + IFC (23)

with the effective fuel cell current IFC, the control signal of the
electrical load IEL,d, and a much smaller time constant �EL. By distin-
guishing between the control signal of the electrical load �EL,d and
the desired load current Id, the desired and the effective fuel cell
current are decoupled. Thus, the current can be used as a control
variable to avoid starvation. If the fuel cell is not connected directly
to the load, dynamic models of the power electronics, e.g. inverters,
can be used instead of equation (23).

2.4. State space description

2.4.1. Nonlinear continuous state space description
The gas dynamics together with the actuators form the con-

trolled fuel cell system. The input or control variables of the system

u =
[

Wd RV IFC,d

]T
(24)

are directly linked to the mass flow controller, the outlet valve, and
the electrical load as the actuators of the system. The state vector

x =
[

Win pin pFC,in pFC,out IFC
]T

(25)

comprises the mass flow into the system, the pressure at the mass
flow controller, the pressure at the inlet and the outlet of the fuel cell
stack, and the effective fuel cell current. The output or controlled

variables

y =
[

�O2 pFC,in IFC
]T

(26)

are the excess ratio of oxygen, the pressure at the inlet of the fuel
cell and the fuel cell current.
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Ŷ=� · xk+� · uk−1+Gx · vd+Gy · vy+� · �Û=Ŷ f+� · �Û (36)

The vector of the predicted output variables Ŷ is a function of the
current state vector xk, the preceding input vector uk−1, the offsets
M.A. Danzer et al. / Journal o

Equations (22), (9), (17), (15) and (23) lead to a state space
escription

˙ = f(x, u) = Ãc x + B̃c u + NLx(x) + NLu(x) u (27)

ith the constant system matrix Ã, the input matrix B̃, the vec-
or of isolated nonlinearities NLx(x), and the matrix of input affine
onlinearities NLu(x). The output equation

= NLy(x) (28)

s also nonlinear.

.4.2. Linearization
The vectors NLx(x) and NLu(x) are linearized by a first order

inearization along the reference trajectory of the states, element by
lement. For example, an elementNLx,i(x1, x2) of the vectorNLu(x)
hat depends on the states x1 and x2 is approximated by

Lx,i(x1, x2) ≈ NLx,i(x1,ref, x2,ref)

+ dNLx,i

d x1

∣∣∣∣
x=xref

(x1 − x1,ref) + dNLx,i

d x2

∣∣∣∣
x=xref

× (x2 − x2,ref) (29)

The matrix NLu(x) is linearized by a zeroth order linearization
long the reference trajectory

Lu(x) ≈ NLu(xref ). (30)

Therewith, the continuous state differential equation (27) can
e rearranged to a linear state description

˙ = f(x, u) ≈ Ac x + Bc u + vc (31)

ith the system matrix Ac, the input matrix Bc, and the offset vector
c. The linearized output equation results to

= NLy(x) ≈ C x + vy (32)

ith the output matrix C, and the offset vector vy. Both offset vectors
erely depend on the reference trajectory of the state vector.

.4.3. Discretization
For the numerical calculation of the control variables the sys-

em needs to be discretized. Thereby it is assumed that the input
and the offset vc are piecewise constant over a sampling period.
iscretization yields a discrete state space description

k+1 = Ad xk + Bd uk + vd (33)

ith the system matrix Ad = eAcT , the input matrix Bd =
T∫
0

e−Ac� ·

c d� = (Ad − I) · A−1
c · Bc and the offset vector vd =

T∫
0

e−Ac� ·

c d� = (Ad − I) · A−1
c · vc. The output equation remains unchanged

k = C xk + vy (34)

The index k indicates the discrete time index for the point in
ime tk = k·T, with the sampling time T.

. Model predictive control
Model predictive control is a multivariable control that takes
ccount of actuator limitations as well as state and output con-
traints. The predictive controller has an internal model which is
sed to predict the behaviour of the system depending on the input
Fig. 4. MPC receding horizon, reference trajectory yref, desired and predicted output
variable, yd and ŷ.

variables over a prediction horizon. Thereby, the prediction horizon
Hp is the number of time increments for the forecast.

Figs. 4 and 5 illustrate the idea of the receding horizon of a
single-input and single-output (SISO) system. In Fig. 4 the mea-
sured output yk at the time t = k·T shows a difference to its desired
value yd. To approach the desired value smoothly an exponential
reference trajectory

yref = yd − (yd − yk) · e− t
�ref (35)

with a defined time constant �ref is calculated for the output. The
task of the optimal controller is to optimise the sequence of input
changes in Fig. 5 so that the predicted output ŷ over a prediction
horizon of Hp time increments yields a minimum error to the refer-
ence trajectory. Thereby, the evaluation of the error can be limited
to the time window t ∈ [(Hw + k)T; (Hp + k)T] at the end of the pre-
diction horizon and the input variable can be left unchanged after
Hu time increments. If the optimal trajectory of the input variable
is found, the first input change is applied to the system. For each
time increment the prediction horizon is shifted and the input is
calculated again.

For a linear model the solution is found analytically. If the solu-
tion does not fulfil the constraints the global minimum is found
solving a quadratic programming problem by the active set method.

3.1. Prediction of the controlled variables

The system model in form of the linear discrete state space
description in equations (33) and (34) enables a prediction of the
output variables by computationally fast matrix–vector operations.
The predicted output variables over the prediction horizon are in
matrix–vector form [11,12].
Fig. 5. MPC receding horizon, input variable u.
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Fig. 6. Structure of the closed loop control circuit.

flow into the system. On the other hand, the desired mass flow is
arbitrarily limited to a minimum value to sustain the reaction and
to humidify the membrane. These actuator limitations result in an
inequality equation for the input variables: umin ≤ uk ≤ umax.
0 M.A. Danzer et al. / Journal o

d and vy and the future changes of the input vector �Û . The lengthy
efinition of the matrices �, �, Gx, Gy and � is to be found in the
ited references. The output is composed of the influence of future
nput changes � · �Û and the free response Ŷ f which describes the
utput behaviour in the case the input would not be changed.

The following sources of error lead to an accumulated error in
he predicted output:

Errors in the continuous model
Calculation of the reference trajectory
Linearization along the reference trajectory
Discretization
Simplifying assumptions as piecewise constant offsets over a
sampling period.

For the fuel cell system model the error of the predicted out-
ut is sufficiently small to calculate an optimal input trajectory as
escribed in the following.

.2. Unconstrained optimisation of the control variables

The optimum which is searched in the model predictive control
cheme is characterised by a minimum error of the predicted output
o the reference trajectory, and additionally a minimum of changes
f the input variable to save actuating energy. The discrete objective
unction which has to be minimised is

=
Hp∑

i=Hw

||ŷk+i − yref, k+i||2Q (i) +
Hu−1∑
i=0

||�uk+i||2R(i)

= ||Ŷ − Y ref||2Q + ||�Û ||2R (37)

ith the diagonal weighting matrices Q and R. It can be expressed
ith sums and in matrix–vector form. As discussed above, the dif-

erence of the predicted output to the reference trajectory ŷ − yref
oes not need to be penalized at all times over the prediction hori-
on. It is sufficient to penalize only the error at the last Hp–Hw time
ncrements. On the other hand, the trajectory of the input values
an be chosen constant after Hu steps. Therewith, less input moves
eed to be optimised.

Introducing the tracking error

= Y ref − Ŷ f = Y ref − (� · xk+ � · uk−1+ Gx · vd+ Gy · vy) (38)

s the difference between the reference trajectory and the free
esponse for no input changes the objective function can be rear-
anged [11]. To find the optimal input changes the gradient of the
bjective function is set to zero. The resulting vector of the optimal
nput changes can be calculated analytically

Ûopt = 0.5 · (�T Q � + R)
−1 · 2 �T Q E. (39)

To solve the optimisation numerically it is formulated as a least-
quares problem with the square roots SQ and SR of the positive
efinite, diagonal weighting matrices Q and R. �Ûopt is the least-
quares solution of the equation

SQ �
SR

]
�Û =

[
SQ E

0

]
(40)

hich can be solved for �Ûopt using, e.g. the MATBLAB matrix left
ivision.
.3. Constrained optimisation of the control variables

If the allowed range of the input and output variables is limited
constrained optimisation problem has to be solved. The opti-
isation problem of the MPC with inequality constraints has the
Fig. 7. Trajectory of the desired and the effective fuel cell current, Id and IFC.

form of a quadratic programming (QP) problem. There are stan-
dard algorithms available to solve QP problems subject to inequality
constraints as for example the active set method [13,14], which is
used in the MATLAB-function linprog. If no constraint are active the
global optimum is found solving the least-squares problem in equa-
tion (40). If one or more constraints are active, the method finds
the minimum feasible solution of the QP problem subject to the
constraints.

4. Control design for the fuel cell system

Fig. 6 shows the structure of the control loop with the vector of
the desired values yd, the model predictive controller (MPC) which
embraces the prediction of the output and the optimisation of the
input, and the nonlinear fuel cell model.

The vector of the desired values for the outputs is

yd =
[

�d pFC,d Id
]T

, (41)

where �d = 2 and pFC,d = 1.5 bar are constant set points and Id = Id(t)
is the trajectory of the desired load current.

The actuators of the fuel cell system are subject to limitations
which may be due to physical limits or due to the balance of plant.
On the one hand the flow resistance of the valve is physically lim-
ited to a minimum value determined by its cross sectional area and
the mass flow controller is only able to supply a maximum mass
Fig. 8. Detail of the trajectory of the desired and the effective fuel cell current of
Fig. 7.
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Fig. 9. Trajectory of the constraint excess ratio �O2
> 1.

Fig. 10. Trajectory of the cathode pressure pFC,in.
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Zustandsraummodelle (in German), Ph.D. Thesis, TU München, 2003.
[13] J. Nocedal, S.J. Wright, Numerical Optimization, Springer, 2006.
[14] R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, 2006.
ig. 11. Trajectory of the mass flow through the fuel cell stack WFC, the desired,
imited mass flow at the MFC Wd, and the mass flow into the system Win.

Since the target of the control design is to allow dynamic load
hanges without damaging the fuel cell, the output variables need
o be constrained: ymin ≤ yk ≤ ymax. Especially to avoid starvation
he fuel cell pressure and the excess ratio of oxygen must not fall
eyond a minimum value. Hence, the excess ratio of oxygen is lim-

ted to a minimum value of �min = 1.5 and the fuel cell pressure to a
alue of pmin = 0.5 bar.

The control design and the simulation of the nonlinear model
s realised in MATLAB/Simulink using embedded MATLAB files in
imulink. Thereby, the sampling time of the prediction is set to
= 1 ms and the prediction horizon to 10 ms. The reference trajec-

ories of the output variables are generated according to equation
35) with the time constants �� = 10 ms, �p = 10 ms and �I = 5 ms for
he excess ratio, the pressure, and the current. As reference trajec-
ory for the state variables the prediction of the preceding point of
ime tk−1 are used.
. Results

To the controlled fuel cell system a rectangular load profile as
epicted in Fig. 7 is applied.

[

[

r Sources 190 (2009) 86–91 91

Figs. 7–11 show the response of the closed loop to the load pro-
file. As can be seen in Fig. 7 and in detail in Fig. 8 the MPC reduces the
slope of the effective fuel cell current in comparison to the desired
current due to the exponential reference trajectory and reduces the
current itself, when constraints are active as in Fig. 9 the excess ratio.
The fuel cell current is not increased again until the constraint of the
excess ratio gets inactive. Subsequent, the effective fuel cell current
reaches its desired value without overshooting.

Fig. 10 shows that at the rising fuel cell current the pressure at
the fuel cell drops, but without approaching the constraint. At the
falling fuel cell current for a short period of time the pressure is
higher than the desired value.

Fig. 11 shows the active actuator limitations. At the fast load
change towards higher currents the desired mass flow reaches its
maximum value and keeps it until the excess ratio and the pressure
reach their desired values.

The MPC successfully performs the task of guaranteeing a min-
imum value of the excess ratio and thereby enables a dynamic fuel
cell operation.

6. Conclusion

The presented model of the fuel cell system which incorpo-
rates the gas dynamics, the coupling of the fuel cell current to
the mass flow, and the models of the actuators is used in a lin-
earized and discretized form as the internal model of a predictive
control scheme. The presented control design prevents fuel cell
starvation by guaranteeing a minimum value of the excess ratio
of oxygen and a minimum value of the fuel cell pressure. The con-
troller additionally integrates actuator limitations in its calculation
of the optimal control inputs. As the results show, the application
of model predictive control to the nonlinear model of the fuel cell
system increases the dynamics, the reliability and the durability of
the fuel cell.

The presented results of the designed controller demonstrate
the applicability of model predictive control approaches to non-
linear fuel cell models. To reduce the computational costs of the
optimisation the implemented algorithm has to be transferred into
C-code. If further reductions are needed alternative model predic-
tive control schemes can be applied [15,16].

References

[1] W. Schmittinger, A. Vahidi, J. Power Sources 180 (2008) 1–14.
[2] J.P. Meyers, R.M. Darling, J. Electrochem. Soc. 153 (2006) A1432–

A1442.
[3] A.A. Franco, M. Gerard, J. Electrochem. Soc. 155 (2008) B367–B384.
[4] A. Vahidi, A. Stefanopoulou, H. Peng, Proc. Am. Control Conf., Boston, MA, 2004,

pp. 834–839.
[5] J. Golbert, D.R. Lewin, Proc. 16th IFAC World Congress, Prague, 2005.
[6] J. Sun, I. Kolmanovsky, Proc. American Control Conference, Boston, MA, 2004,

pp. 828–833.
[7] H. Töpfer, P. Besch, Grundlagen der Automatisierungstechnik (in German), Carl

Hanser Verlag, 1990.
[8] G. Schmidt, Grundlagen der Regelungstechnik (in German), Springer,

1991.
[9] M.A. Danzer, J. Wilhelm, H. Aschemann, E.P. Hofer, J. Power Sources 176 (2008)

515–522.
10] M.A. Danzer, G. Schlumberger, M. Wörz, E.P. Hofer, Modelling, 5th Symposium

on Fuel Cell Modelling and Experimental Validation, Winterthur, Switzerland,
2008.

11] J. Maciejowski, Predictive Control with Constraints, Prentice Hall, 2002.
12] M. Rau, Nichtlineare modellbasierte prädiktive Regelung auf Basis lernfähiger
15] F. Lizarralde, J.T. Wen, L. Hsu, Proc. American Control Conference, San Diego,
California, 1999, pp. 4263–4267.

16] S. Jung, J.T. Wen, ASME J. Dyn Syst., Measure. Control 126 (2004) 666–673.


	Prevention of fuel cell starvation by model predictive control of pressure, excess ratio, and current
	Introduction
	Model of the fuel cell system
	Gas dynamics
	Conversion of oxygen
	Models of the actuators
	State space description
	Nonlinear continuous state space description
	Linearization
	Discretization


	Model predictive control
	Prediction of the controlled variables
	Unconstrained optimisation of the control variables
	Constrained optimisation of the control variables

	Control design for the fuel cell system
	Results
	Conclusion
	References


