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Starvation of polymer electrolyte fuel cells (PEFC) takes place, especially during transients, if reactants
are consumed in the fuel cell faster than they can be supplied. It is one of the main causes of aging and
degeneration of fuel cells.

To prevent oxidant starvation and to allow for a dynamic operation of the fuel cell, the excess ratio
of oxygen needs to be adjusted rapidly by increasing the mass flow into the cathode. This increase is
limited by the inertia of the actuators. Especially at fast load changes the risk of starvation is high. This
problem can be faced by limiting the dynamics of load changes or by decoupling the desired load from the
effective load. This work presents a decoupled approach, where the effective fuel cell current becomes a
controllable variable. Consequently, the control variables are the oxygen excess ratio, the fuel cell pressure,
and the effective current. To prevent starvation the control design has to guarantee that the oxygen excess
ratio does not fall beyond a minimum value. This goal is achieved by model predictive control which is an
optimal control scheme that incorporates actuator limitations and state constraints in the control design.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

An undersupply of fuel cells leads to a depletion of reactants
at the reaction surface and finally to fuel cell starvation. Fuel and
oxidant starvation are one of the main causes of short life and per-
formance degradation of fuel cells [1]. When starvation occurs a
reversal of the fuel cell voltage can happen and carbon corrosion
takes place [2,3]. Especially during transients, starvation can occur
if reactants are consumed in the fuel cell faster than they can be
supplied by the delivery system. To prevent starvation corrective
actions as rate limiters and reference governors for the fuel cell
current, as well as fast mass flow control need to be employed
[4-6].

In the following a new model of the gas dynamics of a fuel
cell system, incorporating the pipes and fittings at the inlet and
the outlet, the valve and the fuel cell stack is presented. It
is a nonlinear model with parameters identified at a polymer
electrolyte fuel cell system. To influence the transients of the
fuel cell current the desired load is decoupled from the effec-
tive load. Thereby, the fuel cell current becomes a controllable
variable.
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To prevent starvation three actuators — the valve, the mass
flow controller, and the electrical load - are used in an integrated
approach. The presented model predictive control approach is a
multivariable control which incorporates the pressure control, the
mass flow control, and the control of the fuel cell current in one
scheme. The model predictive controller calculates optimal con-
trol inputs regarding actuator limitations and constraints of the
controlled variables.

2. Model of the fuel cell system

The nonlinear model of the fuel cell system describes the
dynamic behaviour of the mass flows and the pressure drops of
the gas supply, the fuel cell stack, the exhaust, and the outlet valve.
Furthermore, a model of the mass flow controller and a model of
the electrical load are incorporated.

2.1. Gas dynamics

The model of the gas dynamics is based on the law of conserva-
tion of mass and the description of laminar and turbulent flow [7,8].
The model does not account for spatial dependencies. In analogy to
electronic circuits the gas dynamics is described by an equivalent
circuit of lumped laminar and turbulent flow resistances, R, and
Reurb, as well as mass storing capacitances C [9,10].
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Nomenclature

A system matrix

B input matrix

C capacity

E tracking error

f nonlinear function

H, prediction horizon

] objective function

k discrete time index

Kexp exponential parameter of the turbulent flow resis-
tance

Kiam parameter of the laminar flow resistance

Kiurb linear parameter of the turbulent flow resistance

m mass

NLC vector or matrix of nonlinearities

p pressure

Ap pressure difference

Q weighting matrix

Riam laminar flow resistance

Reurb turbulent flow resistance

R weighting matrix

t continuous time

T sampling time

T temperature (with index)
u input vector

AD vector of future changes to the input vector
v offset vector

w mass flow

X state vector

y output vector

Y vector of predicted outputs
Y free response

Yo, mass fraction of oxygen in air
20, excess ratio of oxygen
Greek letters

o correction factor

T time constant

Indices

0 standard conditions

C continuous

C capacity

d discrete

des desired

eff effective

EL electrical load

FC fuel cell

H,0 water

in inlet

max maximum

MEC mass flow controller

min minimum

0, oxygen

out outlet

react reaction

ref reference

\Y valve

The static behaviour of a component is determined by a nonlin-
ear function

0 -Ap=0-R-W = KjzmW + Ky, WKexp (1)

Rlam Rturb

I/Vi Wout

We
Din C Ap Pout

-

Fig. 1. Equivalent circuit of a component of the gas dynamics with laminar and
turbulent flow resistance, Rj,, and Ry, and capacitance C.

of the pressure drop Ap over the component in dependence on the
mass flow W = ri1 through it, with the nonlinear flow resistance R
which is composed of a laminar and a turbulent part

1
R= Rlam + Rturb = g . (Klam + Kturb WKFC'EXPJ ) (2)

The exponential parameter Kexp describes the nonlinear rela-
tion of the pressure drop and the mass flow at a turbulent flow
resistance. The parameter of the laminar flow resistance K,,, and
the parameters of the turbulent flow resistance Ky, and Kexp are
constant. As a correction factor

To - Pin

o= (3)
Tin - Po

accounts for the deviation from standard pressure and standard

temperature at the inlet of the component. Therewith, the pressure
difference

Ap =f(W, pin, Tin) (4)

is a nonlinear function of the current mass flow through the com-
ponent, the temperature, and the pressure at the inlet.

The dynamic behaviour of a component is related to the capa-
bility to store mass in its volume. With the differential equation of
the pressure at a capacitance C

d 1
ap =p= c We (5)
and the equivalence to Kirchhoff’s current law for mass flows
Win =W+ W (6)
with

_Ap _ Din — Pout
W=R =" % 7)
the differential equation of a component

. A . in —

Win:C'pin‘i‘Tp:C'pin‘i‘w (8)

results. All components as pipes, manifolds, fittings, valves, and the
fuel cell stack itself can be described by equation (8) and the accord-
ing equivalent circuit depicted in Fig. 1. For pipes, manifolds, and
fittings the parameter Kexp is equal to 2. For valves, where the flow
is purely turbulent, the parameter Kj,,, = 0 disappears.

Fig. 2 shows the whole system of the gas dynamics of a fuel cell.

All components in between the mass flow controller (MFC) and
the fuel cell stack, as well as all components in between the fuel
cell stack and the outlet valve are combined to one component for
the inlet and one for the outlet.

Wurc.d Wi Wecin Wec.ou . valve
—P{ MFC }-o—»—{ inlet }—o—»—{ fuel }—o—»—{ outlet }’O_’OLN_O
cell
lpm l PrCin lPFC.um l pv anm

Fig. 2. Equivalent circuit of the fuel cell system comprising a mass flow controller
(MFC), the fuel cell stack, inlet and outlet, and a valve.
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WF C,out
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Fig. 3. Equivalent circuit of the fuel cell stack with effective mass flow Weg.

The differential equation of the inlet with Kjp ex, =2 is

Pin — PFC,in

- (9)
Rin

with the flow resistance

Win = Lin 'pin +

1
Rin = 0,7 . (Kin,lam + Kin,turb WFC,in)- (10)
in
The differential equation of the outlet with Koyt,exp =2 is
. C — PV
Wout = Cout - PFc,out + I)F’;)Q# (11)
out

with the flow resistance

1
Rout = —_ (Kout,lam + Kout,turb Wout)~ (12)
Oout

For the valve which does not have the capability to store mass
an algebraic equation
ov - Apy = 0y - Ry - Wout = Ky, urp WYexp (13)
results with the flow resistance
1 _
Ry = — ‘KV,turb Wg&’f“" ! (]4)
ov
Equation (13) can be combined with the differential equation
(11) to

Wout = Cout 'pFC,out + w (15)
Vout
with the sum of the flow resistances Ryqyt =Ry + Rout.

The model of the fuel cell stack (Fig. 3) differs from the other
submodels because of the electrochemical reaction that is taking
place and the mass flows across the membrane which are modelled
by an effective mass flow.

Wrc = Wrc eft + WEc,out (16)
The differential equation of the fuel cell is

PrcC,in — PFC,out

Wec,in = Crc - Prc,in + R (17)
FC
with the flow resistance
1
RFC = OT-‘C : (KFC,lam + KFC,turb W]{%C’exlf]) (]8)

For the fuel cell stack, the model parameters may depend on the
pressure level, the humidity and the current mass flow.

The structure of the model of the gas dynamics can be used both,
for the anode and the cathode side of a fuel cell. The incorporated
parameters were identified for both sides. In the following only the
cathode side will be regarded.

2.2. Conversion of oxygen

The fuel cell reaction - at the cathode side the reduction of oxy-
gen — couples the gas dynamics to the fuel cell current. The mass
flow of the reacting oxygen

Wreact,02 = kreact,02 -Irc (19)

which contributes to the effective mass flow in the fuel cell is,
with Faraday’s law, proportional to the effective fuel cell current
Irc, where kieact,0, is the proportionality constant.

The ratio of oxygen fed through the fuel cell Wrc o, to the oxygen
consumed in the reaction Wieact,0,

Wec,0

Ao, = —2 >1 (20)

2 Wreact,Oz
is called excess ratio and is defined as the inverse of the conversion.
Thereby, the mass flow of oxygen through the fuel cell is

Wec,0, = Yo, - (Wrc — Wrc H,0)

= Yo, (W - WFC,HZO) (21)
FC
with the mass fraction of oxygen in air yo, .

For values of yo, close to one or less, not enough reactants flow
through the fuel cell to sustain the reaction. In other words, starva-
tion of fuel cells takes place, when less oxygen is fed to the cathode
as is consumed in the reaction.

2.3. Models of the actuators

Besides the outlet valve, the mass flow controller and the elec-
trical load are actuators of the fuel cell system. The dynamics of the
mass flow controller (MFC) is modelled as a first-order lag element

Wy = tvrc - Wi + Wip (22)

with the desired mass flow Wy, the mass flow into the system Wj,,
and the time constant tyrc which describes the inertia of supply-
ing an air mass flow into the system. If models of compressors or
blowers exist they can be used instead.

The electrical load (EL) is also modelled as a first-order lag ele-
ment

Igra = TeL - Irc + Irc (23)

with the effective fuel cell current Igc, the control signal of the
electricalload Ig; 4, and a much smaller time constant g, . By distin-
guishing between the control signal of the electrical load 7g 4 and
the desired load current Iy, the desired and the effective fuel cell
current are decoupled. Thus, the current can be used as a control
variable to avoid starvation. If the fuel cell is not connected directly
to the load, dynamic models of the power electronics, e.g. inverters,
can be used instead of equation (23).

2.4. State space description

2.4.1. Nonlinear continuous state space description
The gas dynamics together with the actuators form the con-
trolled fuel cell system. The input or control variables of the system

T
u= Wy Ry Icq] (24)
are directly linked to the mass flow controller, the outlet valve, and

the electrical load as the actuators of the system. The state vector

T
x=[Win Pin Prcin Prcout Iic| (25)

comprises the mass flow into the system, the pressure at the mass
flow controller, the pressure at the inlet and the outlet of the fuel cell
stack, and the effective fuel cell current. The output or controlled
variables

y=[%0, Prcin IFC]T (26)

are the excess ratio of oxygen, the pressure at the inlet of the fuel
cell and the fuel cell current.
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Equations (22), (9), (17), (15) and (23) lead to a state space
description

X =f(x,u) = AcX + Bc u + NLx(X) + NLy(X)u (27)

with the constant system matrix A, the input matrix B, the vec-
tor of isolated nonlinearities AV'Lx(X), and the matrix of input affine
nonlinearities NZy,(X). The output equation

y = NLy(X) (28)

is also nonlinear.

2.4.2. Linearization

The vectors NZx(x) and NLy(x) are linearized by a first order
linearization along the reference trajectory of the states, element by
element. For example, an element NVZ, ;(x1, X») of the vector NLy(X)
that depends on the states x; and x; is approximated by

NLy i(X1, X2) & NLy i(X1,ref X2, ref)

dNL, dNL,
+ dxx’l (%1 —Xl,ref)+ dxx’l
1 X=Xyef 2 X=Xref
x (%2 — XZ,ref) (29)

The matrix NZy(X) is linearized by a zeroth order linearization
along the reference trajectory

Nﬁu(x) %-/\/Zu(xref)- (30)

Therewith, the continuous state differential equation (27) can
be rearranged to a linear state description

X =f(x,u)~Acx +Bc.u+ v 31)

with the system matrix Ac, the input matrix B, and the offset vector
V. The linearized output equation results to

Y =NLy(X) ~ CX+Vy (32)

with the output matrix C, and the offset vector v,. Both offset vectors
merely depend on the reference trajectory of the state vector.

2.4.3. Discretization

For the numerical calculation of the control variables the sys-
tem needs to be discretized. Thereby it is assumed that the input
u and the offset v, are piecewise constant over a sampling period.
Discretization yields a discrete state space description

X1 =AdXg +Baug + Vg (33)
T

with the system matrix Ag = e<T, the input matrix By = / eAcv.
0
T

Bcdv=(Aq—1)-A7!-B. and the offset vector vy = /e*At" .
0

vedv=(Aq 1) -A;1 - V. The output equation remains unchanged
Vi =Cx; + vy (34)

The index k indicates the discrete time index for the point in
time t;, = k-T, with the sampling time T.

3. Model predictive control

Model predictive control is a multivariable control that takes
account of actuator limitations as well as state and output con-
straints. The predictive controller has an internal model which is
used to predict the behaviour of the system depending on the input

T

, | past:future — - — <

Fig.4. MPC receding horizon, reference trajectory y,.f, desired and predicted output
variable, y4 and y.

variables over a prediction horizon. Thereby, the prediction horizon
Hp is the number of time increments for the forecast.

Figs. 4 and 5 illustrate the idea of the receding horizon of a
single-input and single-output (SISO) system. In Fig. 4 the mea-
sured output y; at the time t=k-T shows a difference to its desired
value y4. To approach the desired value smoothly an exponential
reference trajectory

t
Yret = Yd— (Vd —Yi) - € Tt (35)

with a defined time constant 7, is calculated for the output. The
task of the optimal controller is to optimise the sequence of input
changes in Fig. 5 so that the predicted output ¥ over a prediction
horizon of H, time increments yields a minimum error to the refer-
ence trajectory. Thereby, the evaluation of the error can be limited
to the time window ¢ € [(Hw +k)T; (Hp +k)T] at the end of the pre-
diction horizon and the input variable can be left unchanged after
Hy time increments. If the optimal trajectory of the input variable
is found, the first input change is applied to the system. For each
time increment the prediction horizon is shifted and the input is
calculated again.

For a linear model the solution is found analytically. If the solu-
tion does not fulfil the constraints the global minimum is found
solving a quadratic programming problem by the active set method.

3.1. Prediction of the controlled variables

The system model in form of the linear discrete state space
description in equations (33) and (34) enables a prediction of the
output variables by computationally fast matrix-vector operations.
The predicted output variables over the prediction horizon are in
matrix-vector form [11,12].

Y=V . x+T u_1+Gyx - v4+Gy - 1y+O . AU=Y+O . AD (36)

The vector of the predicted output variables ¥ is a function of the
current state vector Xy, the preceding input vector u,_1, the offsets

u

Fig. 5. MPC receding horizon, input variable u.
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vg4 and vy and the future changes of the input vector AUD.Thelengthy
definition of the matrices W, I', Gy, Gy and © is to be found in the
cited references. The output is composed of the influence of future
input changes @ - AU and the free response ¥; which describes the
output behaviour in the case the input would not be changed.

The following sources of error lead to an accumulated error in
the predicted output:

- Errors in the continuous model

- Calculation of the reference trajectory

- Linearization along the reference trajectory

- Discretization

- Simplifying assumptions as piecewise constant offsets over a
sampling period.

For the fuel cell system model the error of the predicted out-
put is sufficiently small to calculate an optimal input trajectory as
described in the following.

3.2. Unconstrained optimisation of the control variables

The optimum which is searched in the model predictive control
scheme is characterised by a minimum error of the predicted output
to the reference trajectory, and additionally a minimum of changes
of the input variable to save actuating energy. The discrete objective
function which has to be minimised is

HP Hy-1
J= Z [1Pk+i _yref,k+i||(22(i) + Z HAukJriH;zg(,')
i=Hw i=0
= 1Y = Yierllg +11ADIIR (37)

with the diagonal weighting matrices Q and R. It can be expressed
with sums and in matrix-vector form. As discussed above, the dif-
ference of the predicted output to the reference trajectory y — yer
does not need to be penalized at all times over the prediction hori-
zon. It is sufficient to penalize only the error at the last H,—H,y time
increments. On the other hand, the trajectory of the input values
can be chosen constant after Hy steps. Therewith, less input moves
need to be optimised.
Introducing the tracking error

E=Yer—Yi=VYer— (¥ -x+T -1+ Gy -vg+ Gy - 1y) (38)

as the difference between the reference trajectory and the free
response for no input changes the objective function can be rear-
ranged [11]. To find the optimal input changes the gradient of the
objective function is set to zero. The resulting vector of the optimal
input changes can be calculated analytically

N -1
AOop =05-(0'QO+R) -20'QE. (39)

To solve the optimisation numerically it is formulated as a least-
squares problem with the square roots Sq and Sg of the positive
definite, diagonal weighting matrices Q and R. Aflopt is the least-
squares solution of the equation

S0 PN SoE
oo 3

which can be solved for Aﬁopt using, e.g. the MATBLAB matrix left
division.

3.3. Constrained optimisation of the control variables
If the allowed range of the input and output variables is limited

a constrained optimisation problem has to be solved. The opti-
misation problem of the MPC with inequality constraints has the

Y4

desired > MPC Us | nonlinear fuel ——>
values |—> cell model —|
X

Fig. 6. Structure of the closed loop control circuit.
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Fig. 7. Trajectory of the desired and the effective fuel cell current, Iy and Igc.

form of a quadratic programming (QP) problem. There are stan-
dard algorithms available to solve QP problems subject to inequality
constraints as for example the active set method [13,14], which is
used in the MATLAB-function linprog. If no constraint are active the
global optimum is found solving the least-squares problem in equa-
tion (40). If one or more constraints are active, the method finds
the minimum feasible solution of the QP problem subject to the
constraints.

4. Control design for the fuel cell system

Fig. 6 shows the structure of the control loop with the vector of
the desired values yq, the model predictive controller (MPC) which
embraces the prediction of the output and the optimisation of the
input, and the nonlinear fuel cell model.

The vector of the desired values for the outputs is

Ya=[*a Prca Id]Ta (41)

where A4 =2 and pgcq = 1.5 bar are constant set points and Iq =I4(t)
is the trajectory of the desired load current.

The actuators of the fuel cell system are subject to limitations
which may be due to physical limits or due to the balance of plant.
On the one hand the flow resistance of the valve is physically lim-
ited to a minimum value determined by its cross sectional area and
the mass flow controller is only able to supply a maximum mass
flow into the system. On the other hand, the desired mass flow is
arbitrarily limited to a minimum value to sustain the reaction and
to humidify the membrane. These actuator limitations result in an
inequality equation for the input variables: u;, <u, <umax.

_>

I{Acm™)

0.1 02 03 0.4 0.5
t(s) —

Fig. 8. Detail of the trajectory of the desired and the effective fuel cell current of
Fig. 7.
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0 0.5 I 15 2
1(s) —

Fig. 9. Trajectory of the constraint excess ratio Ao, > 1.
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™
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1.2
0 05 1 15 2
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Fig. 10. Trajectory of the cathode pressure pgc .
T —_W W -W

£(s) —

Fig. 11. Trajectory of the mass flow through the fuel cell stack Wgc, the desired,
limited mass flow at the MFC W, and the mass flow into the system Wj,.

Since the target of the control design is to allow dynamic load
changes without damaging the fuel cell, the output variables need
to be constrained: yu,in < ¥k <¥Vmax- Especially to avoid starvation
the fuel cell pressure and the excess ratio of oxygen must not fall
beyond a minimum value. Hence, the excess ratio of oxygen is lim-
ited to a minimum value of \,,j; = 1.5 and the fuel cell pressure to a
value of pi, =0.5 bar.

The control design and the simulation of the nonlinear model
is realised in MATLAB/Simulink using embedded MATLAB files in
Simulink. Thereby, the sampling time of the prediction is set to
T=1ms and the prediction horizon to 10 ms. The reference trajec-
tories of the output variables are generated according to equation
(35) with the time constants 7, =10ms, 7, =10ms and 7;=5ms for
the excess ratio, the pressure, and the current. As reference trajec-
tory for the state variables the prediction of the preceding point of
time t,_q are used.

5. Results

To the controlled fuel cell system a rectangular load profile as
depicted in Fig. 7 is applied.

Figs. 7-11 show the response of the closed loop to the load pro-
file. Ascanbe seenin Fig. 7 and in detail in Fig. 8 the MPC reduces the
slope of the effective fuel cell current in comparison to the desired
current due to the exponential reference trajectory and reduces the
currentitself, when constraints are active as in Fig. 9 the excess ratio.
The fuel cell current is not increased again until the constraint of the
excess ratio gets inactive. Subsequent, the effective fuel cell current
reaches its desired value without overshooting.

Fig. 10 shows that at the rising fuel cell current the pressure at
the fuel cell drops, but without approaching the constraint. At the
falling fuel cell current for a short period of time the pressure is
higher than the desired value.

Fig. 11 shows the active actuator limitations. At the fast load
change towards higher currents the desired mass flow reaches its
maximum value and keeps it until the excess ratio and the pressure
reach their desired values.

The MPC successfully performs the task of guaranteeing a min-
imum value of the excess ratio and thereby enables a dynamic fuel
cell operation.

6. Conclusion

The presented model of the fuel cell system which incorpo-
rates the gas dynamics, the coupling of the fuel cell current to
the mass flow, and the models of the actuators is used in a lin-
earized and discretized form as the internal model of a predictive
control scheme. The presented control design prevents fuel cell
starvation by guaranteeing a minimum value of the excess ratio
of oxygen and a minimum value of the fuel cell pressure. The con-
troller additionally integrates actuator limitations in its calculation
of the optimal control inputs. As the results show, the application
of model predictive control to the nonlinear model of the fuel cell
system increases the dynamics, the reliability and the durability of
the fuel cell.

The presented results of the designed controller demonstrate
the applicability of model predictive control approaches to non-
linear fuel cell models. To reduce the computational costs of the
optimisation the implemented algorithm has to be transferred into
C-code. If further reductions are needed alternative model predic-
tive control schemes can be applied [15,16].
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